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Two-dimensional froths and the dynamics of biological tissues

B. Dubertret,* T. Aste,† H. M. Ohlenbusch,‡ and N. Rivier§

Laboratoire de Dynamique des Fluides Complexes, Universite´ Louis Pasteur, 3 rue de l’Universite´, Strasbourg 67084, France
~Received 12 November 1997; revised manuscript received 26 May 1998!

Two-dimensional foams are used to model the evolution and the steady state of biological tissues. When
only cell division occurs, we deduce the mode of division simply from the stationary distribution of the number
of sides per cells, by inverting a system of coupled rate equations. Comparisons with experimental data confirm
the method. We then discuss the time evolution of tissues evolving both through cell division and cell
disappearance, theoretically and by topological simulations. Simulations reproduce realistically the steady state
of the innermost layer of the human epidermis. We conclude that short-ranged topological information is
sufficient to explain the evolution and stability of biological tissues.@S1063-651X~98!08111-2#

PACS number~s!: 87.10.1e, 87.22.2q
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I. INTRODUCTION

Random cellular structures form the basic frame of ma
natural or engineered materials@1#. Among the many mate
rials that have already been studied, epithelial tissues~the
human epidermis, the epithelium of the cucumber, or
cork epithelium! are most striking for their ability to remain
in steady state despite the fact that cells constantly divid
die. Better than any other systems, they can recover any
ternally induced departure from equilibrium~injuries or ex-
ternal stress!.

Unlike other types of tissues~in vertebrates: nerve
muscle, blood lymphoid, and connective tissues!, epithelial
tissues have a scant extra-cellular matrix and tigh
bounded, polyhedral-shaped cells. They cover all the cav
and free surface of the body. They form barriers to the mo
ment of water, solutes, and cells from one body compartm
to another. A deeper understanding of the cellular dynam
and the organization mechanisms of epithelial tissues m
yield new biological insights relevant for some skin disea
~psoriasis! or wound healing.

The mechanisms that allow an epithelial tissue to return
its sound state involve intricate biological processes wh
eventually result in the division or disappearance of a c
These two biological events produce local topological tra
formations that summarize the topological fate of a c
They are ultimately responsible for the dynamics of the
sue.

The precise signals that induce a cell to divide or to
tach ~as, for example, from the basal layer of the hum
epidermis! are a matter of concern for biologists. Broad
the issue is whether the equilibrium state of a sound tissu
the result of communication between the cells~be it short or
long ranged! or whether it can be explained solely by th
local environment of a cell~such as its topological charac
teristics!.

*Electronic address: benoit@maxent.u-strasbg.fr
†Electronic address: tomaso@ldfc.u-strasbg.fr
‡Electronic address: helgo@maxent.u-strasbg.fr
§Electronic address: nick@ldfc.u-strasbg.fr
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Topologically, a two-dimensional cellular tissue is a frot
partitioning the plane into irregular polygons. Every vertex
the equilibrium point of three edges under tension~the line
tension of the interface between two cells!. A vertex with
higher incidence number is not mechanically stable; it sp
into several stable vertices with coordination number 3. I
froth, all the possible cell configurations can be explored
mitosis and disappearance. Cell mitosis and disappear
are specific combinations of the local, elementary topolo
cal transformations: ~i! Exchange of neighbors (T1); ~ii !
disappearance of a three-sided cell (T2) or its inverse
(T221). There is only one random variable associated wit
cell, namely the numbers of its sides ~or its topological
chargeq562s). It is shuffled by mitosis or disappearanc
but its averaged valuês&56 is fixed throughout the evolu
tion of the tissue by Euler’s relation and minimal inciden
number. Corrections of order 1/N are due to boundary con
ditions, whereN is the total number of cells. These corre
tions vanish identically if, as here, periodic boundary con
tions are used. They are negligible for large tissu
~thermodynamic limitN→`).

In this paper, computer simulations of froths evolvin
with cell mitosis and~or! disappearance are performed. T
cellular networks consist of more than 104 ~except when test-
ing the influence of the size of the network! cells on a lattice
with periodic boundary conditions. Starting from differe
initial systems, ordered or disordered, we study their evo
tion when cells divide and~or! disappear under specific to
pological rules. We show that the evolution of a biologic
tissue depends only on the rules chosen for its dynamics,
on its initial states.

For tissues, such as the epithelium of the cucumb
evolving with mitosis only, inversion of the coupled ra
equations for cell population@2# shows that the kernel o
division can be deduced from the shape of the steady-s
distribution. This establishes a link between the steady-s
distribution and the dynamics that generates it. This resu
confirmed by computer simulations and is used to predict
mode of division in cucumber@3#, cork, amnion@3#, and
cultured Madin-Darby Canine-Kidney~MDCK! epithelial
cells @4#. The predictions are in qualitative agreement w
the experimental data available.
6368 © 1998 The American Physical Society
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PRE 58 6369TWO-DIMENSIONAL FROTHS AND THE DYNAMICS OF . . .
When both cell division and disappearance occur, as is
case in the human epidermis, the simulations confirm
theoretical results obtained in@5#. We analyze the evolution
of various systems in terms of the way cells divide and d
appear. The results indicate that the ability of a real tissu
recover its sound steady state is explained by sha
dependent information stored in its cells. No additional
formation is needed.

We describe the epithelial tissue as a topological froth
study the consequences. Physically, a topological froth
its evolution result from space-filling by cells, separated
interfaces which carry all or most of the elastic energy@6#.
This is indeed the case in a two-dimensional soap fro
where ann-sided cell shrinks~or expands! at a rate propor-
tional to (62n), the local, topological information stored i
the cell ~Von Neumann’s law!. Von Neumann’s law is the
generalization to the froth of Laplace’s law for an isolat
bubble ~whereby the pressure difference inside and outs
the bubble, driving its evolution, is proportional to the su
face’s tension and to its curvature!. Indeed, it can be obtaine
simply as the resultant of three interfaces with equal tens
pulling on any one of then vertices of the cell. The topologi
cal description is therefore a direct consequence of the p
ics of the froth.
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II. RATE EQUATIONS

In order to characterize statistically the cut of a biologic
tissue whose cells divide and disappear, we used a l
mean-field model based on the topology of the cells. E
cell is associated to a polygon~topological cell! whose num-
ber of sides equals the number of first neighbors of the b
logical cell. The cut of the biological tissue is thus associa
to a connectivity graph of cell edges and three-fold vertic
No geometry or physical attributes such as vertex positio
edge curvatures, cell areas, or internal pressures are t
into account. The population of theN cells of such a cellular
system is partitioned into subpopulations ofNs s-sided cells
(3<s). The topological transformations~division and disap-
pearance! of cells may produce a mix of the subpopulation
For instance, the symmetric division of a six-sided cell p
duces two five-sided daughter cells and increases by one
number of sides of two neighbors of the dividing cell. Sim
larly, the disappearance of a cell comes along with a mo
fication of the number of sides of some of its neighbors, th
mixing the cell subpopulations.

The steady state of each subpopulation has been stu
in @5#, using a system of rate equations. For clarity a
completion, we recall that the variation of the subpopulat
of s-sided cells is given by
dps

dt
5 (

k>3
pkPm~k!Dm~k!H 2dks1G~k→s!1

2

k
@Ms21~k!2Ms~k!#2psJ

1 (
k>3

pkPd~k!Dd~k!S 2dks2Ms~k!1 (
i 521

s23

Ms2 i~k!ai~k!1psD . ~1!
y
n

e at

gi-

are
rs
bors
v-
ld

l
that
ps5Ns /N is the probability that a cell belongs to the su
population of s-sided cells. Changes ofps are due to~i!
division of an s cell, ~ii ! formation of ans-sided daughter
cell, ~iii ! affected neighbors that haves sides or (s21) sides
before division,~iv! disappearance of ans cell, ~v! affected
neighbors that have (s2 i ) sides (21< i<s23) before dis-
appearance. In the steady state,dps /dt50.

The steady-state equations@5# depend on the follow-
ing: ~a! Pm(k)Dm(k) and Pd(k)Dd(k), the conditional
probability that an existingk-sided cell divides or disappear
per unit of time;~b! the division kernel12 G(k→s), condi-
tional probability that ak-sided dividing cell has ans-sided
daughter;~c! ai(k), the conditional probability that ak-sided
detaching cell givesi sides (21< i<k24) to one of its
neighbors;~d! the nearest-neighbor topological correlatio
M s(k)5psAks , where psAkspkN

2 is the total number of
pairs of neighborings- andk-sided cells.

This equation has two parts. The first part describes
division mechanism@~i!–~iii !# and the second describes ce
disappearance@~iv! and~v!#. If we forbid cell disappearance
Pd(k)Dd(k)50, Eq.~1! becomes the rate equation of a sy
tem evolving with cell division~or fragmentation! only. This
equation, first introduced in@2#, has been further analyzed b
Delannayet al. in @7#. They confirmed that the linear varia
tion of Ms(k) on k, predicted by maximum entropy argu
e

-

ments@8,6# for structures in statistical equilibrium, is a ver
good assumption for systems evolving with cell divisio
only. In @9#, Ask is shown to depend linearly onk ands, if no
constraints other than those imposed by filling the spac
random are imposed.Ask5(s26)s(k26)1s1k26. Here,
s< 1

6 is a structural parameter, which is negative in biolo
cal tissues.

The second part of Eq.~1! is obtained forPm(k)Dm(k)
50. It governs the evolution of a system whose cells
only allowed to detach. During mitosis, only two neighbo
gain one side. But when a cell detaches, several neigh
~sometimes all! can gain or lose sides. This effect is go
erned byai(k), which has been computed in a mean-fie
approximation in@5# through the recursion relations

a21~k!5@~k23!a21~k21!11#/k for k>4,
~2!

ai~k!5@~k23!ai~k21!12ai 21~k21!#/k

for k> i 14, i>0

and the initial conditiona21(3)51. It is properly normal-
ized: ( iai(k)51. By definition, ai(k)50 for i .k24, k
>3. The sum rule( i ia i(k)5126/k insures that when a cel
disappears, it removes six edges from the system, so
^s&56 is conserved.
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TABLE I. Comparison of the analytical solutions given in@7# with the solutions obtained numerically. T
obtain the last significant digit,pk is computed fork<500.

Structure Method p4 p6 m2 s

S1 Analytical @7# 0.217 72 0.125 17 12.883
Numerical 0.217 716 0.125 174 12.877 0.1173

S2 Analytical @7# 0.196 36 0.133 58 8.166
Numerical 0.196 363 0.133 580 8.166 02 20.0577
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Equation~1! describes thus the interplay of two oppos
phenomena: the creation of cells by mitosis and the dis
pearance of cells by detachment or death. When mit
dominates @(kpkPm(k)Dm(k).(kpkPd(k)Dd(k)#, the
number of cells in the system increases, whereas it decre
if detachment is preponderant. A steady number of cell
ensured when cells divide at the same rate on average as
detach.

Up to now, Eq.~1! has been studied in particular cas
@2,7,5#. In the next section, we show that its first part can
solved numerically for almost any value of the paramet
Pm(k)Dm(k) and G(k→s). The properties of the steady
state distributionps ~especiallyp6 and the third momentm3)
classify cellular networks through their division kernel. S
lutions of the whole equation are then obtained from to
logical simulations.

In general, the solution of Eq.~1! is the distributionps ,
characterized by its moments, specificallymn5Š(s2^s&)n

‹,
with ^sn&5(spss

n and^s&56. The parameters are three se
the division kernelG(k→s), Pm(k)Dm(k), Pd(k)Dd(k),
and the structural parameters.

III. STEADY-STATE SOLUTIONS
UNDER DIVISION ONLY

The steady state of a cellular structure evolving with
vision only depends only on two sets of paramete
Pm(k)Dm(k) and G(k→s), which define completely how
cells divide. For given values of these parameters, we h
solved numerically the first part of Eq.~1! using the module
HYBRD from the packageMINPACK ~retrieved fromNETLIB!.
This code finds a zero of a system ofn nonlinear functions
@here, the first part of Eq.~1!# in n variables~hereps) by a
modification of the Powell hybrid method. This code w
found to be very robust for the problem we tackled. Ho
ever, to avoid as much as possible numerical errors~unphysi-
cal distributions!, we checked for each solution obtained th
0<ps<1, (sps51, and (ssps56. All the solutions pre-
sented here satisfy these two conditions within 10210 and are
zeros of the first part of Eq.~1! with an error smaller than
10215.

Furthermore, to test the reliability and the precision of t
method, we compared the numerical solutions with the a
lytical ones, in the two cases where analytical solutions e
@7#, namely for a flat kernelG(k→s)52/(k21) (3<s<k
11), when dividing cells are selected randomly amongN
cells @Pm(k)Dm(k)51/N, caseS1# and when dividing cells
are randomly selected by first choosing one edge at ran
@Pm(k)Dm(k)5k/6N, caseS2#. Table I illustrates the reli-
ability of the numerical method.
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Once the stability of the numerical method has been v
fied, we solved Eq.~1! for different values of the parameter
Pm(k) andG(k→s). To explore the widest possible range
steady-state solutions, we chose a one-parameter-depe
exponential function forPm(k)Dm(k)5C exp(ak) ~whereC
is a constant of normalization!, Pm(3)5Pm(4)50, and five
division kernels with different levels of symmetry~given in
the Appendix!. We chose an exponential functional form fo
the rate of division for two reasons.~i! From the data given
by Lewis for the cucumber one can deduce th
Pm(k)Dm(k)5C exp(1.4k) @2#. We supposed that other bio
logical tissues had similar rates.~ii ! This functional form is
very convenient to explore the effect of a~strongly! increas-
ing or decreasing rate on the steady-state distribution.

For each kernel, we solved numerically the first part
Eq. ~1!. The parametera can range from24 to 4, but it must
be constrained so that every solution respects(sps51 and
(ssps56 with the requirements defined above. Each se
parameters yields a steady-state solution of a cellular sys
evolving with cellular division.

The numerical solutions, as a function of the paramet
can be classified into different families. Two solutions a
members of the same family if they have the same divis
kernel.

Consider a given family. Two different members of th
family are characterized by differentPm(k)Dm(k), i.e., by
the way dividing cells are chosen. WhenPm(k)Dm(k) is an
increasing function ofk, many-sided cells divide preferen
tially and the associated distributionsps are narrow~small
m2), with large p6 ~'1

2!. By contrast, decreasing function
Pm(k)Dm(k) yield very broad distributions, associated wi
largem2 and lowp6 . A constantPm(k)51/N corresponds to
a random choice of the cells and is associated with br
distributions~cf. solutionS1).

We illustrate this behavior in Figs. 1 and 2 for the fami
defined by a fully symmetric kernel.

Figures 1 and 2 indicates that the stationary distributio
within the same family are usefully characterized byp6 and
the second momentm2 or the third momentm35(s(s
2^s&)3ps . As usual,^s&56 is fixed. Bothm2 and m3 are
decreasing monotonically with increasingp6 , or with in-
creasing a, the parameter of the rate of divisio
Pm(k)Dm(k)5C exp(ak). Accordingly,p6 decreases mono
tonically with decreasinga. This is not the case forp5 and
p7 .

It has been inferred by the maximum entropy argum
that the relation betweenm2 and p6 is universal in two-
dimensional froths in statistical equilibrium forp6.0.33
@10#. This universality had been suggested empirically ear
@11#. Thus, different distributions with the samep6.0.33
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PRE 58 6371TWO-DIMENSIONAL FROTHS AND THE DYNAMICS OF . . .
have the same second moment. As Fig. 3 illustrates, they
distinguished by the third momentm3 , which measures the
asymmetry of the distribution about^s&56, together with its
width. Thus, to distinguish between different families, s
tionary distributions should be characterized byp6 andm3 .

Precisely, if the functional form ofPm(k)Dm(k) is
known, there is a one-to-one map between the two m
relevant parameters of the stationary distribution (p6 ,m3)
and the parameters governing the dynamics of the cells:
division kernel and the rate of cell division. This classific
tion is indicated in Fig. 3: for each family~each type of
division kernel!, there is a relation betweenm3 and p6 , pa-
rametrized bya, i.e., by the rate of division. Each curve o
Fig. 3 represents this relation, for the five different famili
whose division kernel is given in the Appendix. The curv
are nonintersecting. Figure 3 can be regarded as a map o
dynamics. To each point (p6 ,m3) corresponds a division
kernel and a value ofa ~i.e., the probability that ak-sided

FIG. 1. Division only. The distributionpn is the solution of the
first part of Eq. ~1! for a fully symmetric division kernel and
Pm(k)Dm(k)5C exp(ak) for 24<a<4. For low values ofa, the
distribution is very broad (m2.30), but becomes very narrow asa
approaches 4 (m2,

1
2 ). m2 increases andp6 decreases monotoni

cally asa decreases. By contrast,p5 andp7 are not monotonic ina.

FIG. 2. Division only. Plot of the second moment of the dist
butions solution of the first part of Eq.~1! as a function ofp6 , for
a fully symmetric division kernel, andPm(k)Dm(k)5C exp(ak).
Smallm2 are associated with large values ofa. p6 decreases asa
decreases~see Fig. 1!. The full dots correspond tom2p6

251/2p,
inferred to be universal for 0.33,p6,0.66 @10#.
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cell divides!. We have thus inverted the first part of the sy
tem of Eq. ~1!. From any distribution resulting from cel
division only, we obtain the dynamics that drove the froth
its steady state. Other functional forms for the rate of di
sion give qualitative results identical to the ones plotted
Fig. 3. The overall position and shape of the curves m
change slightly. Comparison and prediction for real tissu
are given in Sec. V.

IV. SIMULATIONS

When Pd(k)Dd(k)50, the numerical resolution of Eq
~1! is robust and easy. However, when the full equation
considered, the code used becomes much more unstable
even if some solutions can be obtained@5#, analysis similar
to the one done in the previous sections is impossible.
most of the parameters we tried, the solver was not abl
find a physical solution, with probabilities 0<pk<1 and a
mean number of sides per cell equal to 6. Topological sim
lations are not subject to the same drawbacks. The co
tional probabilities that ak-cell divides or disappears ar
chosen arbitrarily, and the system is left to evolve.

A simulation starts with the generation of a hexagon
cellular network ofN cells with periodic boundary condi
tions~typically, N5104). The network can be taken as initia
structure, or it can be disordered by performing 30N T1
transformations~exchange of neighbors! on edges chosen a
random. If aT1 produces a two-sided cell or a cell sharin
an edge with itself, it is refused. Throughout the simulatio
the cellular network is purely topological, consisting of
connectivity graph of cell edges and threefold vertices. O
the graph is retained during the simulations; there are
geometric or physical attributes such as vertex positio

FIG. 3. Each curve is a representation (m3 as a function ofp6)
of the distributions solution of Eq.~1! ~division only! when G(k
→s) is fixed andPm(k)Dm(k)5C exp(ak), aP@24,4#. Five dif-
ferent division kernels are represented~from left to right: G1 to
G5 , see the Appendix!. The most asymmetric kernel (G1) corre-
sponds to the leftmost curve. As the kernel becomes more sym
ric, its associated curve moves to the right. The rightmost cu
corresponds to the fully symmetric kernel (G5). This family-
specific relation betweenm3 and p6 is to be contrasted with the
relation betweenm2 and p6 ~Fig. 2!, which is the same for every
family ~i.e., independent of the division kernel!.
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TABLE II. The conditional probabilities per move of division,P(muk), of a k-sided cell, for different
modesa, b, c, andd of simulation.

k 3 4 5 6 7 8 9 10 .10

P(muk)a 1 1 1 0 0 0 0 0 0
P(muk)b 0 0 0 0 1 1 1 1 1
P(muk)c 0 0 0 0.01 0.02 0.05 0.1 0.2 1
P(muk)d 0 0 0.01 0.05 0.4 1 1 1 1
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edge curvatures, cell areas, or internal pressures.
Two types of dynamics have been performed: cell di

sion only and cell division together with cell disappearan
In both cases, the simulation consists of a series of suc
sive moves numbered 0,1,2,3, . . . . A move is defined as fol-
lows.

A cell is chosen at random. It hask neighbors, say.~i! In
the case of division only, the cell is divided symmetrica
with the probability P(muk) and left unchanged with the
probability 12P(muk). ~ii ! In the case of division and dis
appearance, if the move number is even, the cell is divi
symmetrically with the probabilityP(muk) and left un-
changed with the probability 12P(muk). If the move num-
ber is odd, the cell is made to disappear with the probab
P(duk) and left unchanged with the probability 12P(duk).

A move is unsuccessful if the cell chosen is left u
changed, successful otherwise. The disappearance ofk-
sided cell is obtained with a succession of (k23) T1 per-
formed on its edges chosen randomly, followed by aT2. If a
T1 is not possible, as is the case when the edge chose
also that of a three-sided neighbor, aT2 is performed in-
stead. As a consequence, the disappearance of one cel
induce the disappearance of several cells.

In all simulations, unless specifically mentioned, cells
vide with a symmetric kernel. The choice of the neighbo
affected by the division is random, as is the choice of
daughter cell with the extra edge whenk is odd.

The only parameters of the simulations are the two dis
butionsP(muk) and P(duk), which are unrelated. They ar
equivalent to the parametersPm(k)Dm(k) andPd(k)Dd(k),
respectively, defined in Eq.~1!. In the simulations, the time
is measured by the total number of moves attempted~suc-
cessful or not!.

A. Cellular division

We investigated the evolution of systems evolving w
division only for four different choices~a,b,c,d! of P(muk),
given in Table II.

In order to compare the results of the simulations with
solutions of the first part of Eq.~1! ~Sec. II!, P(muk) should
have been taken as proportional to exp(ak). If we do so,
sinceP(muk),1 for all k, mostP(muk) are close to 0, and
the time needed to reach equilibrium in the simulations
prohibitive. This is why the compromiseP(muk)51 for k
.k0 and has been chosen.

In mode a, only cells with a small number of sides (k
<5) divide, and we anticipate a very disordered steady st
By contrast, in mode b, only cells with a large number
sides (k>7) divide. Modesc and d have been chosen t
reproduce the distributions of natural structures.
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We computed the integral rate of growthR(t), defined as
the ratio of the total number of divisions performed to t
total number of divisions attempted:

R~ t !5
N~ t !2N~0!

t
. ~3!

The average increase of cells per movedN(t)/dt
5(kpk(t)P(muk) is related toR(t) through Eq.~3! by

(
k

pk~ t !P~muk!5
dN~ t !

dt
5

d@N~ t !2N~0!#

dt
5

d

dt
@ tR~ t !#.

~4!

In all modes,R(t) reaches an asymptotic valueR` ~Fig. 4!,
independent of the time. This implies, through Eq.~4!, that
(kpk(t)P(muk)5R` , which strongly suggests, sinc
P(muk) is independent of the time, that the distributionpk(t)
is stationary. Thus, whenR(t)5R` , it is very likely that the
system remains statistically unchanged, and that its sec
moment is constant as observed in Fig. 5.

Within a family, R` depends on the values ofP(muk). In
general, low values ofR` are associated with the more o
dered structures. We found thatR`50.73, 0.19, 0.05, and
0.01 for systemsa–d, respectively~Fig. 4!.

Similarly, the number of moves necessary forR(t) to
reach its asymptotic valueR` depends onP(muk). But it
also depends on the size and the disorder of the initial s
tem. For each modea–d, we started the simulation from
two disordered initial networks of 100 cells and 104 cells,
respectively. When small systems are considered,R` is
reached after 23104 divisions, that is, 200 times the size o
the initial network. The evolution of large systems@N(t
50)5104# indicates thatR(t) converges to its limit faster
for systems with smallR` ~Fig. 4!. Systemd reachedR`

after only 73104 divisions while systema is still far from
R` after 253104 divisions. We expect the rate of systemsa
andb to reach its asymptotic value after 2003104 divisions,
that is, 200 times the size of the initial network.

The steady state reached by a system evolving with d
sion only is independent of the initial disorder of the frot
We have obtained statistically identical froths starting fro
the hexagonal lattice (m250) or from a very disordered net
work with m2.13 ~Fig. 5!. In the first case, the system
evolves from order to disorder, whereas in the second ca
is the opposite. Division is thus a local topological transfo
mation, which, if performed with given rules, leads any c
lular system into a steady distribution whatever its init
state.

Consider a system that is driven away from its stea
state by some external disturbance~physical or biological!. If
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FIG. 4. Rates of division~ratio of number of divisions per-
formed to the number of divisions attempted! for systemsa–d,
from top to bottom. Plain lines: initial disordered structure of 1
cells. Dotted lines: initial disordered structures of 104 cells. We
have plotted the rate of division as a function of the number
divisions instead of the time~number of moves! because only suc
cessful moves~divisions! make the system evolve towards statio
arity. A stationary distribution is reached well beforeR(t)5R` :
Usingpk(t)5pk in Eq. ~4!, one obtainsR(t)5R`1B/t, whereB is
a constant related to the initial size of the system and toP(muk). In
terms of the number of divisions (Ndiv), the distribution is station-
ary when R(Ndiv)5R̀ (111/@Ndiv/B21#). Thus, the (Ndiv) scale
should be rescaled byB.

FIG. 5. Evolution of the second moment of two systems
divisions are performed. Initial structures have 104 cells. If the ini-
tial network is a hexagonal lattice@raising curves,m2(t50)50#,
the system evolves towards a disordered state. If the initial netw
is highly disordered@descending curves;m2(t50)513.2#, the sys-
tem evolves towards a less disordered state. The final state~statis-
tical equilibrium! of each mode of simulation is independent of t
initial configuration of the network. The system associated to
two upper curves is the systemS2 of Sec. III. Cells, chosen by firs
selecting an edge at random, divide with a flat division kernel. T
cells of the system associated to the two lower curves divide w
moded ~symmetric division: many-sided cells are more likely
divide than few-sided cells; cf. Table II!.
the information contained in the cells pertaining to the w
they divide @i.e., P(muk) and G(k→s)# is unchanged, the
system will self-regulate to return to its original steady sta

B. Division and detachment

We analyzed the disorder and the temporal evolution
four systems~e, f, g, andh! for which there is no systemati
proliferation of cells or no catastrophic disappearance of
the cells over a long time. Typically, for all times between
andt5N(0)2, N(t) is bounded betweenN(0)/5 and 5N(0).
The different choices of the parameters are given in Ta
III.

In modese and f, few-sided cells divide and many-side
cells detach, whereas in modesg and h, many-sided cells
divide and few-sided cells detach.

The distributions obtained in modese and f have broad
unimodal distributions centered atk54 ~Fig. 6! and highm2

(m2
e.40, m2

f '21). The distributions are stationary~within
statistical fluctuations!, with a large tail, which induce large
fluctuations ofm2 ~Fig. 7!.

Conversely, distributions obtained with modesg and h
have narrow unimodal distributions~Fig. 6! centered on 6,
with small m2 (m2

g51.42, m2
h50.5). Those systems ar

highly ordered and statistically similar to natural syste
~see Sec. V!. Their steady-state distributions fluctuate mu
less than those of systemse and f ~Fig. 7!.

For systemse–h, we computedRm(t) @Rd(t)#, the inte-
gral rate of division~disappearance!, defined as the ratio o
the total number of division~disappearance! performed to
the total number of division~disappearance! attempted. As in
the case of division only, the two rates can be expresse
terms ofpk(t):

Rm~ t !5(
k

pk~ t !P~muk!,

Rd~ t !5(
k

pk~ t !P~duk!.

f

s

rk

e

e
h

FIG. 6. Simulations with division and disappearance. Distrib
tions of the number of sides for the modes (e–h). Circles: modee;
squares: modef; crosses: modeg; and stars: modeh. The param-
eters defining each mode are given in Table III.
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TABLE III. The conditional probabilities per move of division,P(muk), and disappearance,P(duk), of
a k-sided cell, for different modese, f, g, andh of simulation. Attempted divisions@with P(duk)50# and
attempted disappearances@with P(muk)50# are alternated.

k 3 4 5 6 7 8 9 10 .10

P(muk)e 1 1 0 0 0 0 0 0 0
P(duk)e 0 0 0.305 1 1 1 1 1 1
P(muk)f 1 0.3 0.2 0.1 0 0 0 0 0
P(duk)f 0 0 0 0.09 0.295 0.7 1 1 1
P(muk)g 0 0 0.04 0.12 0.16 0.4 0.5 1 1
P(duk)g 1 0.8 0.2 0.05 0.011 0 0 0 0
P(muk)h 0.05 0 0 0 0.05 0.5 0.95 1 1
P(duk)h 1 0.515 0.069 0 0 0 0.069 0.515 1
e

io

i
isa
ve
y

s
at

s
ok
le
ng

il

e a
se-
the

e of
de
les
the

o-
led
ts.

e

oped
s
use
lly
in-
n

tw
f
le

h to
For modese–h, Rm(t) andRd(t) reach an asymptotic valu
(R`

m andR`
d , respectively!, independent of the time~Fig. 8!.

This strongly suggests that the distribution becomes stat
ary, pk(t)5pk . For all these modes,Rm(t)>Rd(t), even
though the number of cells is not increasing overall. This
because the disappearance of a cell may induce the d
pearance of some of its three-sided neighbors. Howe
modesg and h have a very narrow distribution with hardl
any three-sided cells, andR`

m5R`
d to a very good approxi-

mation.
The temporal evolution of systemse–h is characterized

by periods of cell gain alternating with periods of cell los
This fluctuating behavior is found to have the same err
characteristics, whatever time scale is considered~Fig. 9!. At
a given time of its evolution, a system can be simultaneou
in a different trend according to the scale at which we lo
For example, on a short-range and middle-range time sca
system may lose cells even though it is growing over a lo
range time scale of growth~star in Fig. 9!. It is impossible to
predict, within a given time scale, whether the system w
eventually grow or die away.

FIG. 7. Fluctuations of the second moment of modese–h ~top
to bottom! as divisions and disappearances are performed. The
highly disordered modese and f evolve with large fluctuations o
their second moment. By contrast, the second moment of the
disordered modesg and h is constant~within statistical fluctua-
tions!. All distributions are stationary, but divisions of cells wit
many sides induce huge fluctuations inm2 in modese andf, where
the distribution has a larger tail.
n-

s
p-
r,

.
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ly
.
, a
-

l

Long-range fluctuations of the number of cells introduc
variation of the size of the system by a factor of 5. Con
quently, either the average surface of a cell or the area of
substrate should be flexible. Furthermore, as in the cas
division only, the evolution of systems whose cells divi
and disappear is fully determined by the topological ru
given for division and disappearance. It is independent of
size or the disorder of the initial system.

V. COMPARISON WITH NATURAL SYSTEMS

As mentioned in the Introduction, the dynamics of bi
logical tissues formed from confluent cells can be mode
with 2D froths evolving with divisions and/or detachmen
Some epithelial tissues evolve solely with cell division~epi-
thelium of the cucumber!, whereas the dynamics of mor
complex ones~mammalian epidermis! involve also cell dis-
appearance. In this section, we use the technique devel
in Sec. III to predict the way cells divide in natural system
and compare the results with the data available. We then
the simulations of Sec. IV to produce systems statistica
equivalent to natural ones. We conclude that topological
formation limited to the cell suffices to mimic the evolutio
of a biological tissue.

o

ss FIG. 8. Evolution of the rates of divisions~ratio of the number
of divisions attempted to the number of divisions performed! and
disappearance~ratio of the number of disappearances attempted
the number of disappearances performed! for modese, long-dashed;
f, dashed;g, dotted; andh, solid line. For all modes,R`

m>R`
d .
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A. Division only

We analyzed the distributions of four different biologic
tissues evolving with division only: the epithelium of a 10
mm cucumber@3# ~i!, the cork~ii !, human amnion@3# ~iii !,
and cultured MDCK@4# ~iv!.

We computed the third moment of each experimental d
tribution; their labels are given in brackets (p6 ,m3). The
cucumber~0.474,0.08! is characterized by a very narrow di
tribution ps centered on 6 and a smallm3 . The cork
~0.3784,0.179! has a wider distribution centered on 6 and
fairly high m3 , denoting an asymmetrical distribution. Th
human amnion~0.397,0.06! has the lowestm3 and thus the
most symmetrical distribution. As for the cultured MDC
~0.364,0.675!, its steady-state distribution is centered on
very narrow and fairly asymmetric:p550.310 and p7
50.184.

We then reported each couple (p6 ,m3) in Fig. 10, a mag-
nification of Fig. 3, and deduced for each tissue the value
the parametersP(muk), and G(k→s), characterizing the
way cells divide.
-

,

of

Although the distributions of~ii ! and ~iii ! have different
(p6 ,m3), they are almost on the same curvem35 f (p6) ~Fig.
10!. This suggests that they have very similar kernels
division. The cells of the cork and human amnion thus div
with the same type of symmetry. The two systems differ
the conditional probability that their cells divide. We foun
that Pm

ii (k)Dm
ii (k)'exp(1.1k) and Pm

iii (k)Dm
iii (k)

'exp(1.35k). Thus, many-sided cells divide with a highe
probability in the human amnion than in the cork.

The cucumber’s cells belong to a different family. The
divide more symmetrically with a conditional probabilit
Pm

i (k)Dm
i (k)'exp(1.4k). These observations are in ver

good agreement with the data given by Lewis@3#. The family
of the cultured MDCK is close to that of the cucumber, b
with a division kernel that is almost fully symmetric, as o
served experimentally. We found thatPm

iv(k)Dm
iv(k)

'exp(0.9k)
The values of the parameters of each system, appr

mated from Fig. 10, can be computed with more precision
solving directly the first part of Eq.~1!. They can then be
ing
t

e

FIG. 9. Evolution of the system as divisions and detachments are performed~modeh!. Three time scales are represented, increas
clockwise from top left. A star represents the number of cells~20 337! of the system after 12 5743104 moves. The star illustrates the fac
that the system can appear in different trends~decreasing, stationary, or increasing number of cells! when viewed from different scales. Th
thick line on the abscissa marks the number of successful moves represented in the preceding figure.
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used to perform~time-consuming! topological simulations
with the same characteristics as the biological tissues.

B. The human epidermis

As shown in@5#, 2D froths can be used to model realis
cally the renewal of mammalian epidermal tissues. Such
sues have a layered structure that can be regarded as a
of cells filling at random the space between the dermis
the outer surface~horny layer!. The renewal of epiderma
tissues depends on the dynamics of their innermost one-
deep layer—the basement layer—which is the only pl
where cells divide. The cells of the basement layer can ei
divide or detach to ascend in the upper layers. The se
attachments of these cells on the dermis is very similar
2D froth evolving with cell divisions and cell disappea
ances.

In @5#, it was found that equations 1 admitted only o
solution that fulfilled the steady-state constraint:
(kpkPm(k)Dm(k)5(kpkPd(k)Dd(k). This solution is asso-
ciated to the parametersPm(k)Dm(k)5(5.112k)8 and
Pd(k)Dd(k)5(7.012k)8.

We simulated a tissue evolving with parameters reprod
ing those of the numerical solution. This system is modeh of
Sec. IV. The distribution obtained is given in Table IV and

FIG. 10. The dynamic map (p6 ,m3) of Fig. 3, enlarged, for the
four families of division kernels, defined in the Appendix, withgi

51, 0.5, 0.13, and 0 from left to right. Points represent natural d

* , cucumber~0.474,0.08! @3#; 1, human amnion~0.397,0.06! @3#;
3, cork ~0.3784,0.1785!; +, MDCK ~statistics computed from pic
tures of MDCK cells, given by Wegener, and cultured as in@4#!.
Cells in the cork and human amnion divide similarly, less sy
metrically than in cucumber epithelium. The cultured MDCK ce
are highly disordered, yet divide almost perfectly symmetrically
s-
uid
d

ll-
e
er
of
a

c-

compared to the experimental data and the numerical s
tion. The concordance between the three distributions is v
good.

The evolution of the simulated system is very sensitive
the values ofP(muk) andP(duk) for 4<k<8. For example,
increasingP(du4) from 0.515 to 0.516 yields a system th
dies away after 8633105 moves. The same result is obtaine
after 7173105 moves if P(mu8) is changed from 0.500 to
0.499.

VI. CONCLUSIONS

We have studied the evolution of epithelial tissues form
from confluent cells using 2D topological foams. Two typ
of tissues were analyzed: those evolving with cell divisio
only, such as the cucumis epithelia, the cork, or the amn
and those evolving with both cell divisions and cell disa
pearances, such as the basement membrane, the inne
layer of the human epidermis. The tissues were assimila
to a planar graph of cell edges and threefold vertices: a
topological froth.

The rate equation governing the variation of the num
of s-sided cells of a froth evolving with divisions only ha
been solved numerically for a variety of division kernels a
a wide range ofPm(k)Dm(k), the conditional probability
that ak-sided cell divides per unit of time. We classified th
solutions in families containing systems with the same d
sion kernel. Each solution is characterized bym3 andp6 . For
each family, we obtained a continuous curvem3(p6). The
curves for different families do not intersect. The relati
m3(p6) is therefore characteristic of the family. If one know
the third moment of a distributionps and the probability that
a six-sided cell exists, one can deduce the symmetry of
division kernel and the conditional probability per unit
time, Pm(k)Dm(k), that ak-sided cell divides. From the sta
tionary distribution, we can infer the dynamics of cell div
sion. We used this technique to predict the symmetry of
division kernel andPm(k)Dm(k) for the epithelia of the cu-
cumis, the cork, the human amnions, and the cultu
MDCK. The predictions are in very good agreement with t
data available for the cucumber@3#.

We have performed topological simulations of syste
evolving with divisions only and with divisions and detac
ments. When only divisions are performed, we showed t
the systems evolve toward a steady state whatever in
froth is chosen. The convergence is very fast when the s
tems converge to a froth with a smallm2 , but can be slower
if m2 is larger. We were able to produce steady-state fro
with a very different amount of disorder fromm2,0.45 to
m2.30.

When both divisions and detachments are performed,
evolution of the system is a mixture of two competin

a.

-

e nu-
TABLE IV. Distributions obtained with the simulation compared to the experimental data and th
merical solution.

k 3 4 5 6 7 8 >9

pk ~simulation! 0 0.006 0.214 0.571 0.194 0.014 0
pk ~experiment! 0 0.012 0.208 0.566 0.194 0.020 0
pk ~theory! 0 0.002 0.218 0.564 0.199 0.007 0
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mechanisms: gain of cells and loss of cells. We analy
the evolution of systems in statistical equilibrium, for whic
on average, the gain of cells compensates the loss of c
When the systems are highly disordered, their second
ment exhibits large fluctuations. When they have smallm2 ,
the fluctuations are much smaller. In all cases, the distr
tions are stationary after some time and within statisti
fluctuations. The temporal evolution of the systems ove
long time is characterized by a scale-invariant evolution
their number of cellsN(t). Over a long time,N(t) can in-
crease or decrease by a factor of 5. We showed that
general evolution of systems evolving with division and d
tachment is independent of the initial disorder of the fro
and of its size. The information contained inP(muk) and
P(duk) andG(k→s) thus determines the eventual statistic
state of the system.

We simulated the evolution of the innermost layer of t
epidermis, the basement membrane. The distribution
tained by simulation is in very good agreement with expe
mental data and with the analytic solution.

The main conclusion of this work is that purely topolog
cal information limited to the cell suffices to explain th
stability and the evolution of biological tissues evolving wi
division and/or detachment. No additional information~spe-
cific cell-cell correlation or long-range signal! is needed.

The approach we developed can be applied to all type
tissues made of confluent cells evolving through divis
and/or disappearance, regardless of the species consid
For such tissues, the predictions we made in Secs. III an
give qualitative information on the cell dynamics. Our pr
dictions are exact when the functional forms of the para
eters of division are known. These functional forms can
deduced directly or indirectly from experiments, as has b
done in@2#.

We have shown that purely topological information on
individual cell determines its fate, and suffices to explain
stability and evolution of biological tissues. Specifically,
the mammal’s epidermis, basal cells whose 2D attachm
on the basement membrane has five sides or fewer de
while 2D cells with seven sides or more divide, as symme
cally as possible.

APPENDIX

Here, we define the division kernelsG(k→s) introduced
in Sec. II and used to obtain Figs. 3 and 10.
d
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One of the main parameters controlling the topologi
division of a cell is the symmetry with which it divides. Fo
instance, a six-sided cell may divide symmetrically in tw
five-sided daughters, more asymmetrically into a six- an
four-sided daughter, or fully asymmetrically into a three- a
a seven-sided cell.

In our model, the symmetry of the division is controlle
by the kernel of division1

2 G(k→s), introduced in Sec. II. It
is the conditional probability that a daughter cell produc
by the division of an existing dividingk-sided cell hass
sides. For symmetricG, we expect cellular systems whos
dynamics include cellular division to evolve toward a stead
state characterized by narrower distributions and smallerm2 .
Conversely, asymmetricG are expected to yield more diso
ganized systems.

G(k→s) is constrained by three relations@2#:

G~k→s!5G~k→k142s!, ~A1!

(
s

G~k→s!52, ~A2!

(
s

sG~k→s!5k14. ~A3!

If a k-sided cell divides into ans-sided daughter cell, it also
produces a (k142s)-sided daughter @relation ~A1!#.
G(k→s) is normalized to 2 with relation~A2! @the division
kernel 1

2 G(k→s) is normalized to 1#. Relation~A3! is a con-
sequence of the symmetry ofG(k→s). We studied five dif-
ferent types of division kernel (G i , i 51, . . . ,5) associated
with increasing degrees of symmetry asi increases.

~i! G1 is the most asymmetric kernel. Each dividingk-
sided cell produces a three- and a (k11)-sided daughter.
This kernel yields the most disordered structures~highest
m2), similar to the fractal patterns that one obtains by s
tematic vertex decoration with a three-sided cell@12#.

~ii ! G2 is a broad, flat kernel. G2(k→s)52/(k21)
(3<s<k11). A k-sided cell is fragmented into two cells b
an edge which bisects two different sides chosen at rand
among itsk sides.~The two sides must be different to avo
two-sided cells.!

~iii ! For G i>3 , we used the following functional form
parametrized with the numbergi : g351, g450.5, g550.

For 3<k<8,
k/s 3 4 5 6 7 8 .8

3 1 1 0 0 0 0 0

4 gi 222gi gi 0 0 0 0

5 gi /4 12 gi /4 12 gi /4 gi /4 0 0 0

6 gi /8 3gi /8 22gi 3gi /8 gi /8 0 0

7 0 gi /4 12 gi /4 12 gi /4 gi /4 0 0

8 0 gi /8 3gi /8 22gi 3gi /8 gi /8 0
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For k>9, if k is even,

G i@k→~k14!/2#522gi ,

G i@k→~k14!/221#5G i@k→~k14!/211#5
gi

3
,

G i@k→~k14!/222#5G i@k→~k14!/212#5
gi

9
,

G i@k→~k14!/223#5G i@k→~k14!/213#5
gi

18
.

If k>9 is odd,

G i@k→~k11!/212#5G i@k→~k21!/212#512
gi

4
,

r-

io
G i@k→~k11!/213#5G i@k→~k21!/211#5
3gi

6
,

G i@k→~k11!/214#5G i@k→~k21!/2#5
gi

6
,

G i50 otherwise.
G5 is the most symmetric kernel. A (k52n)-sided cell

divides into two (n12)-sided cells and a (k52n11)-sided
cell divides into daughter cells withn13 andn12 sides. It
corresponds to the rightmost curve of Fig. 3.G4 is slightly
asymmetric. G3 , more asymmetric thanG4 , is qualitatively
halfway betweenG2 andG5 .
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